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Abstract. A multibaker map with “‘kinetic energy” is
proposed which incorporates an external field. The map
is volume-preserving, time-reversal symmetric and con-
serves total energy. In an appropriate macroscopic limit,
the particle distribution is shown to obey a Smoluchow-
ski-type equation. For the cases without any external
field and with a constant external force, the nonequilib-
rium stationary states are constructed by solving the
evolution equation of the partially integrated distribu-
tion functions. These states are described by singular
functions such as incomplete Takagi functions and
Lebesgue’s singular functions. In an appropriate mac-
roscopic limit, the mass flows for the stationary states
are shown to be identical to the ones expected from the
Smoluchowski equation and a ‘“heat flow” proportional
to the local energy gradient appears. The Gaspard—
Gilbert-Dorfman entropy production is calculated for
the stationary states and is shown to be positive.
Particularly, for the case with a constant external force,
when the energy distribution is independent of the
spatial distribution, the entropy production reduces to
the one consistent with classical thermodynamics. The
result shows that there exists a volume-preserving driven
multibaker map whose entropy production is consistent
with classical thermodynamics.
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1 Introduction

The emergence of irreversible behaviors and the under-
standing of microscopic entropy production are long-
standing problems in statistical mechanics [1-5]. Recent-
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ly, stimulated by the progress of dynamical systems
theory, the problems have been extensively studied
mainly from two different points of view (Ref. [6] and
references therein). On the one hand [6—12], the dynamics
is modified in such a way that a fictitious damping force
is introduced to avoid an uncontrolled growth of the
kinetic energy due to an external driving force, while it
preserves time reversibility. For such systems, called
thermostated systems, nonequilibrium stationary states
are realized as Sinai—Ruelle-Bowen (SRB) states and
they fully characterize transport properties such as a
transport law, transport coefficients and their fluctua-
tions. For example, Ohm’s law and Einstein’s relation
have been rigorously proved for the driven thermostated
Lorentz gas [8]. For thermostated systems, the Gibbs
entropy of a nonequilibrium stationary state is not well
defined as a result of the singular nature of the SRB
states, but the Gibbs entropy production is well defined
and is related to the thermodynamic entropy production
(cf. Refs. [6, 10] and references therein). On the other
hand [4, 13-18], nonequilibrium stationary states have
been investigated for open Hamiltonian systems such as
the Lorentz gas and an area-preserving multibaker map.
In this case, the nonequilibrium stationary states are
described by fractal distributions similar to the SRB
states. The latter approach is based on the belief that the
underlying microscopic dynamics is Hamiltonian and
that the nonequilibrium states are established by boun-
dary conditions. In this case, because of the fractality of
the stationary distributions, the entropy production is
calculated with the aid of the coarse grained entropy and,
for an open dyadic multibaker map [18], it reduces to a
thermodynamic expression in the macroscopic limit. The
interrelation of the two approaches has been discussed in
Refs. [19-21]. We note that, in both approaches, the
Gallavotti-Cohen hypothesis [11] plays an important
role. It asserts that the microscopic dynamics of an N-
body system for large N is of hyperbolic character.

The multibaker map [13] is a lattice extension of the
conventional baker transformation, which exhibits a
deterministic diffusion. For the simplest dyadic area-
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preserving multibaker map, nonequilibrium stationary
states were constructed with the aid of Takagi-type
functions [16, 18]. The multibaker maps and their gen-
eralizations are extensively used to study transport
properties including the problem of irreversible entropy
production [12, 16, 18-21]. However, the multibaker
maps used so far can only describe the mass transport
since they do not have energy. Also, as pointed out by
Breymann et al. [20], the conventional multibaker map
mimicking diffusion with drift can have an entropy
production consistent with classical thermodynamics,
only when the dynamics is dissipative. Therefore, it is
interesting to propose and investigate an area-preserving
driven multibaker map which includes energy and whose
entropy production is consistent with classical thermo-
dynamics.

In this paper, we introduce and investigate a multi-
baker map with energy and which is volume-preserving
and time-reversal symmetric. As shown in Sect. 2, an
external field can be introduced by requiring the con-
servation of total energy and of the phase-space volume.
The evolution equation of the measure is derived in
Sect. 3 and the macroscopic limit is studied in Sect. 4. It
is found that, in the macroscopic limit, the local energy
distribution function obeys the Smoluchowski-type
equation. In Sect. 5, microscopic distributions for the
stationary states are investigated in detail for the cases
without any external field and with a constant external
force. In both cases, the nonequilibrium stationary states
are described by fractal distributions and their transport
properties agree with a phenomenological theory based
on the Smoluchowski equation. The entropy production
for the nonequilibrium stationary states is investigated
in Sect. 6 and is shown to be consistent with classical
thermodynamics when there is a drift in the mass
transport. Section 7 is devoted to concluding remarks. In
the Appendix, we derive the stationary distributions for
the dissipative multibaker map introduced by Tél and
coworkers [19, 20] and compare the results with the
conservative multibaker map with energy.

2 Multibaker map with energy

We introduce a multibaker model which is a caricature
of the Lorentz gas and which incorporates both energy
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Fig. 1. Schematic representation of the phase space I'. The
sectional area at “‘kinetic energy”” E depends on E

is therefore natural to introduce a ‘“kinetic energy
variable” FE in addition to the internal coordinates
(x,y) for each cell n. We also note that the phase-space
volume of the Lorentz gas at each scatterer is
proportional to the square root of the kinetic energy
E. Hence in our multibaker model, we assume that the
sectional phase-space area for each energy value E
depends on E. Then the phase space I' of our model is
(cf. Fig. 1)

I={(nx,y,E)neZ, EcR",
0<x<a(E), 0<y<a(E)} , (1)

where Z and R™ stand for the sets of integers and
of positive real numbers, respectively, and a(E) is
a positive and increasing function of the kinetic energy E.

Now we turn to the dynamics, which is invertible,
area-preserving, energy-conserving and time-reversal
symmetric. In order to control the diffusion coeffi-
cient, we use a three-strip version. As in the Lorentz
gas, the dynamics depends on the presence of an
external field. So we consider the two cases sepa-
rately.

2.1 Free dynamics

When there is no external field, the system exhibits pure
diffusion and the kinetic energy is preserved. Thus, we
have (cf. Fig. 2)

x €[0,la(E)),

x € la(B), (1 - Da(E)), (3

(n w1, =02 DalB) - z)a(E),E), x € [(1- Da(E),a(E)] .

and an applied field. First, we observe that the phase-
space dimension is 3 for the first return map of the
Lorentz gas: 2 for the velocity direction and the hitting
angle at the scatterer and 1 for the kinetic energy. The
conventional multibaker maps mimic the return map of
the Lorentz gas on the constant kinetic energy surface. It

where the parameter / (0 </ <1/2) determines the
diffusion coefficient, s = 1 — 2/, and the subscript ® = 0
stands for the absence of the external field. In general,
the diffusion coefficient may depend on the kinetic
energy, but for simplicity, it is assumed to be indepen-
dent of E. The map Bgp— is clearly volume-preserving.
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Fig. 2. The multibaker map on the constant total energy surface:
the case without an external field

Moreover, it is time-reversal symmetric in the sense that
it satisfies

I Bo—o I =Byl , (3)
where the involution / is given by
I(n7xay7E):(n7a(E)7y7a(E)7xaE) . (4)

2.2 Dynamics under an external field

Now we consider the case where there exists an external
field derived from a potential energy ® which is a
function of the site coordinate n. We require the
dynamics to preserve both the total energy and the
phase-space volume and to be invertible and time-
reversal symmetric with respect to the involution /.
These requirements determine the dynamics as follows.

1. As a result of the total energy conservation, when
a point of the site n is mapped to the site n =+ 1, its
kinetic energy changes from E to E — A, ®(n), where
AL®(n) =D+ 1) — d(n) is the potential energy dif-
ference.

2. Because of the energy dependence of the phase-
space volume, the transition rates / from the site n to
the sites n + 1 should depend on the external potential @
as well as on the site coordinate n.

3. Since the map Bg is onto, conditions 1 and 2 give
1alE — A syal B alE = AP
= a(E)*,

where s, is the transition rate from the site n to itself:
sp =1 — 1 — [ . Differentiating Eq. (5) with respect to
®(n+ 1) and setting ® =0, one obtains a differential
equation for a(E):

a oIt sp+ 10
—2la(E) ddf) + ( ( n_alqj(n :1)" 1>)®_0a(E)2 =0,

which has a solution a(E) = aexp(cE) with constants
a(>0) and c. As a(E) is an increasing function of E,
¢ > 0 and one can always set ¢ = 1 by changing the unit
of the energy, i.e., a(E) = aexp(E).

4. The time-reversal symmetry with respect to the
involution / imposes the condition
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I, = 17, exp{2[(n) — d(n—1)]} . (6)

n

5. As the self-transition rate s, is not fixed by the
above prescriptions, we assume that it is independent of
the potential @ as ® is constant over each cell, i.e.,
s, =1-=21

In short, we obtain the following (cf. Fig. 3)

For x € [0, [, a(E)),

X
Bo(n,x,y,E) = (n—l, ,
ol ) I, exp[~A_®(n)]

It exp[—A_®(n)] y, E — A_(I)(n)> ) (7)

For x € [I,a(E),(1 — [})a(E)),

n

Bo(n,x,y,E) = (n, %7 sy+ ITa(E), E) }
(®)
Forx € [(1 — I})a(E),a(E)],
B(I)(nvxava)
_(, x— (1 —1INa(E)
- ( T exp AL O]
1y + (=1 )a(E)] exp[-A,®(n)],
E— A+(D(n)) . 9)
In the above, the parameters /- satisfy
i+, =21, (10)
L, =l exp{2(®(n) — ®(n - 1)]} , (11)

where A ®(n) =d(n+1)—P(n) and s =1—2I. The
map Bg is invertible and time-reversal symmetric in
the sense that IBol = Bg' and preserves the total
energy E + ® and the phase-space volume. Also, for
a fixed value of the total energy E + ®, the map is
hyperbolic.

We note that the inverse of Bg is given by the fol-
lowing equations.

N\

V00000

i

B

n+1

Fig. 3. The multibaker map on the constant total energy surface:
the case with a constant external force

n-1 n
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Fig. 4a—e. Incomplete Takagi 2 2
functions 7,(z) versus z associ- - |©
ated with the intracell distribu- I @ ~
tions along the contracting S \%
y-direction for the case without < S
an external field. The ordinate is ! !
T,(z)/1. The system consists of
nine cells and # is the cell
coordinate. The parameter / has
the value / = 0.3 0 0
0 7 1 0 z 1
2.
2
§ ® < |
= 3
&~ ] <
1
ol
0 7 1 of . :
2
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For y € [0,}a(E)), preserving, we consider the time evolution equation of
the partially integrated distribution function G, for a
Bg' (n,x,y,E) = <n + 1,1, exp[-A, ®(n)] x, fixed total energy E:
y y
E—AD . _ _
I oxpl A, ()]’ + <">> Gi(n,x, . E) = / A po(By'[n,x. ' \E— d(n))) | (15)
(12) 0
For y € [ITa(E), (1 — [,)a(E)), where p, is the initial distribution function and E
v~ I*a(E) denotes here the total energy. Its evolution equation can
Bg' (n,x,y,E) = <n, sx+ 1 a(E), —2——=, E> ) be obtained from Eqs.(12)—(14).
S For y € [0,/ a,(E)),
(13) .
Fory € [(1 o l;)a(E),a(E)], GH](H,X,)/,E) = ln+l exp[—AJD(n)]
By (n,x,y. E) = ( — 1, [ x4 (1= 1 a(E)] x Gi ( 1 exp[=A. D)) x,
y—(—=1,)a(E) y
X exp[—A_D(n)], ) —~ , E). (16
It | exp[—A_®(n)] I, exp[—A,®(n)] (16)
E— Aq)(n)) (14)  Fory e [Ita,(E), (1 = I;)as(E)],

3 Evolution equation and flow

We consider the equation of motion of the states, which
are represented by measures. Since Bg is volume-

Gl‘-H (nrxvy?E) = ln_+1 exp[iA-ﬁ-(I)(n)]
X Gi(n+ 1,1, exp[—A ®(n)] x, ani(E), E)

—Ita (E
y Znan< ),E> .
S

+s5 G, (n, sx+ 1, a,(E), (17)
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Fig. 5a—e. Incomplete Lebesgue 2
singular functions f,(z) versus z
associated with the intracell dis-
tributions along the contracting
y-direction for the case with a
constant external force. In order
to compare the distributions to
those without an external field,
the deviation from the uniform

(@)

(e)

{td2)-z}/U"-17)

distribution defined by 0
[fu(2) —z2]/(I= = I') is plotted.

The system consists of nine cells

and n is the cell coordinate. The

parameters are /T = 0.35 and

I =025

(o)

(D

{t2-2}/U =17

For y € [(1 - l;)an<E)aan(E)]9

Gip1(n,x,y,E) =1, exp[—A;D(n)]
X Gi(n+ 1,1, exp[-A;®(n)]x, a1 (E), E)
+5G[n, sx+ 1, a,(E),a,(E), E]
+ I exp[—A_®(n)]

X G,(n =1, [x+ (1= 17 )an(E)]

y—(=1,)an(E)
It exp[—A_®(n)]

x exp[~A_D(n)], ,E) s
where a,(E) = a[E — ®(n)] = aexp[E — ®(n)].

Now we turn to the flow. From Eq (18), the proba-
bility distribution II,(n,E) = )del[n x,a,(E), E]
per site and per energy is found to obey an equation of
continuity

Ht+1 (n,E)—H,(n, E)

_Jn\nJrl(Evt)""_Jnfl\n(Evt) ’ (19)

where the probability flow J,,,(E, ) from site » to site
n+ 1 at time ¢ is given by

(©)

N

Tuns1(Et) = / dxGy[n,x,a,(E), E]
(1=10)an(E
/,,HanH(E)
— dxG[n + 1,x,a,11(E), E] . (20)
0

As ecasily seen, the evolution Egs. (16)-(18) give a

stationary solution
G(’%x»y»E) :pcq(E)y (21)

For this state, the distribution I(n, E) per site and per
energy is given by
[(n, E) = % pq (E) exp|—20(n)] . (22)

and the probability flow vanishes

Juwir(E) = [T (n, E) — 17, TI(n + 1, E)
.
{1_ ';fexp[ 2A+d)(n)]}l;H(n,E)—O .

(23)
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This stationary state corresponds to the equilibrium
state under the potential ®.

4 Macroscopic limit

In this section, we study the macroscopic limit of the
asymptotic evolution of the state assuming that the
initial density py[n,x,y, E — ®(n)] is continuously differ-
entiable with respect to x. Then from Egs. (16)—(18), we
find that G,(n,x,y, E) is continuously differentiable with
respect to x for all #> 0 and its derivative obeys the
inequalities

10.G,|| < 210G, 1| < -+

<A oG, (24)

where [|0;G;|| = sup, ., 5 [0:G(n,x,y, E)| and
= sup{/, 7, exp[-2A. D(n)] + (1 — 20)?
+ 12, exp[—2A_®(n)]} < sup(lF,1-20) <1

In the above, we have used /7, exp[— 2Ai(1)( )| =1F
and [} + [~ =2l. Therefore, for long time ' < 1, Gt
becomes x- mdependent In thls asymptotic regime, we
study the macroscopic limit of the evolution equation
for the probability distribution IT,(n,E) per site and
per energy. By setting y = a,(E), dropping the x-
dependence in Eq. (18) and multiplying the result by
a,(E), one finds

i1 (n, E) — Iy(n, E)
=1 M,(n+1,E)+ [ \II(n—1,E) = 2111,(n,E) .
(25)
The macroscopic limit is established by scaling / as
T
/= ?D , (26)

and letting 1 — 0 and d — 0 with finite D, where t and
d are the unit time step and site spacing, respectively
[20]. The finite quantity D is the diffusion coefficient.
Correspondingly, the potential @ and the probability
density per energy m =1II/d are smooth functions of
X =nd and T = mt. From Eq. (11), one finds

oP 2
L= 1Fdl5o+0(d) .

Therefore, Eq. (25) reduces to
7TT+T(X7 E) - nT(XvE)

z"l2 [;(2( (2 aq;g() (X, E) + w)] +0(d)

or by taking the limit d — 0 and 7 — 0,

onr(X,E)
oT
0 (,00(X) onr(X,E)
08—X<2 e nT(X,E)+T87X> , (27)

which is a Smoluchowski-type equation (e.g., Ref. [22]).

Similarly, the flow J,, 41 (E, ) is given by

Jn\n+1(E7 t) = l;Hl(nvE) - l;+1H,(n + lvE) ) (28)
which, in the macroscopic limit, reduces to
. . _Jn|n+l<E7 t) _ a(D(X)
JX,T;E) == = —2D £ nr(X,E)
onr(X,E)
D——= . 29
15).4 (29)

Because of the positivity of the kinetic energy, the range
of the total energy depends on the site coordinate X.
Hence, the implications of Egs.(27) and (29) should be
discussed for each concrete case.

It is remarkable that, starting from an area-preserv-
ing and energy-conserving system under an external
field, the Smoluchowski-type equation is derived without
the use of a thermostat. The essential ingredient of this
behavior seems to be the rapid increase of the phase
space volume (~e*f) as a function of the kinetic energy,
which seems to prevent the uncontrolled growth of the
kinetic energy due to the external force. At first sight,
this assumption looks rather unphysical since, in the case
of the Lorentz model, the phase-space volume increases
gradually with kinetic energy (~+/E). However, when
the number of degrees of freedom increases, the phase-
space volume grows more rapidly as a function of kinetic
energy (~EN4/2, for a d-dimensional system consisting of
N particles). Therefore, one can regard the exponential
growth of the phase volume as effectively taking into
account the properties of large systems.

5 Nonequilibrium stationary states

So far, we have discussed the macroscopic aspects of the
general model. Since the detailed structures of the
nonequilibrium stationary states as well as the relaxation
modes depend on the explicit form of the external
potential ®, we study the nonequilibrium stationary
states under a constant external force F, i.e., ®(n) = Fn
for a flux boundary condition, where the multibaker
chain of length N +1 is connected to two particle
reservoirs at both ends. The distributions of the
reservoirs are assumed to be uniform with respect to
the Lebesgue measure.

First we note that, since the system is uniform, lff is
expected to be independent of the site coordinate n and
thus,

IT+1 =21, I =e¢
which gives
B 21

S l4et

Secondly, as shown in Sect. 4, the stationary state
distribution is independent of the x-coordinate and thus,
the cumulative distribution obeys the following equa-

tions.
y
—— E| .
I~eF >

2F l+
)

(30)

For y € [0,/7a,(E)),

Guo(ny,E) = e G ( "y (1)



FOI'y € [l+an(E)7 (1 - li)an(E»a
Goo(my,E) = 1"e FGo[n+ 1, a1 (E), E]

+s Goo(n, w E> . (32)

For y € [(1 — I7)a,(E),a,(E)],
GOO(I’I,_)/,E)
=1"e"Gyun+1, ay1(E), E]+s Guln, a,(E), E|

y—(1 =1 )ay(E
+l+eFGOC(n1, ( l*eF> ( ), E) , o (33)
where a,(E) = a(E —nF) = aexp(E —nF) and n=0,

I,...N. The flux boundary condition is imposed by
requiring

Goo(=1,3,E) = p_(E)y ,
Goo<N+ 17yaE) = :0+(E)y : (34)

By substituting y = a,(E) into Eq. (33) and noting
s = 1— 21, one finds

21Gy[n,a,(E),E) = I"e "Gy [n 4+ 1,a,:1(E), E]
+ l+eFGoo[n - lvanfl(E%E] :
(35)

Since the solution of Eq. (35) for F = 0 is qualitatively
different from that for F #0, we discuss them
separately.

5.1 Free transport

When F =0, Eq. (35) together with the boundary
condition Eq. (34) gives the solution

_ p4(E)—p_(E)

== N1z a(E)(n+1)
+p_(E)a(E) . (36)

Note that when F =0, a,(E) is independent of the site

coordinate n.
Then, the solution of Egs. (31)—~(33) is given by

Gln,a(E), E]

GOC(nuy7E)
p+(E) — p_(E) y
- N12 (n+1)y+a(E) T, (TE)H
+p_(E)y , (37)

where T, is the incomplete Takagi-type function and is
defined as the unique solution of the functional equation

I Ty (/1) + 2, 0<z<1,

T(z2)=¢ sTl(z=1)/s]+ 1, I<z<1-1,
IToc— 14D/ 41—z, 1—1<z<1,
(38)

with the boundary condition 7_;(z) = Ty11(z) = 0. We
remark that the distribution Eq. (37) is absolutely
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continuous with respect to the Lebesgue measure and
becomes singular only for an infinitely long multibaker
chain: N — oo.

Now we discuss the transport properties of the sta-
tionary state. Let P, and E, be, the particle distribution
and the average total energy per site, respectively:

P, E/dEa(E)GOO[n,a(E),E] ,
0
E, = / dE Ea(E)Gouln, a(E), E]
0
Then
P, —P
- E,—E_ _
=g D HE (40)
where
Po= [ dEa(E’oue)
0
E. = / dEEa(E)p.(E) .
0

Eqgs. (39) and (40) imply that the particle distribution
and the average total energy linearly depend on the site
coordinate n.

For the stationary state Eq. (37), the particle flow

oo

J%Hl = [ dEJ,,+1(E) and the energy flow
0
oo
J,ﬁ,,ﬂ = Ode E Jyu1(E) are given by
P, —P_
M +
Jn\n+1 =-1 N2 =—I(P,y1—P) , (41)
E, —E_ _ _
E +
Tini1 = = I3~ = —1(Eus1 = Eu) (42)

which show that the flows are proportional to the
gradient of the distributions. Equation (41) is nothing
but Fick’s law of mass transport. These results imply
that the system allows transport governed by a diffusion
equation. The equality of the mass diffusion coefficient
and the energy diffusion coefficient is simply due to the
fact that, in the present system, transport is essentially
controlled by the mass transport. We note that similar
energy transport has been numerically studied for the
Lorentz channel by Alonso et al. [23].

Finally, we briefly discuss the macroscopic limits of
the flows. Let p(X) = P,/d be the particle density and
e(X) = E,/P, be the average energy per particle. Then
the particle flow and the energy flow can be rewritten
as

M
_ Jn|n+1 —_D 3P(X)

]M(X) =7 X ) (43)



_ Jrﬁnﬂ ap(X)G(X)
Je(X) = T D X
= )
~op) 240 (44)

which implies the appearence of the heat flow jq(X)
proportional to the gradient of the energy per particle
[24]:
0e(X)

oX

The details of the connection with linear nonequilibrium
thermodynamics will be discussed elsewhere.

Ja(X) = —Dp(X)

5.2 Transport under constant external force

When F #0, Eq. (35) together with the boundary
condition Eq. (34) gives

Goolnt,a,(E), E] = A(E)e™ + B(E)e" | (45)

where the coefficients A(E) and B(E) are functions of
p+(E):

A(E)
_ expl(V + Flp_(E) — exp[-(N + DF]o, (E) ,

2sinh(N + 2)F ’

(46)

B(E) = %aw)ew . (47)

Then, the solution of Eqs.(31)—(33) is given by
Goc(n, 3, E) = A(E) 2 +

e ()

where f, is a function similar to the Lebesgue singular
function and is defined as the unique solution of the
functional equation

fu(2) =
I fur1(z/17),
s fallz=17)/s] + I,
Fflz— 1+ )]+ 1 1,

0<z< [T,

"<z<1l-1,

1-17<z<1 ,
(49)

with the boundary condition f_(z) = fy+1(z) =z. In
the case of a finite chain, the distribution Eq. (48) is
absolutely continuous with respect to the Lebesgue
measure and becomes singular only for an infinitely
long multibaker chain: N — oco. Furthermore, as
discussed in the Appendix, the stationary distribution
Eq. (48) is identical, except for trivial scaling factors, to
that for a dissipative multibaker map of Ref. [20] with
“appropriate” dissipation.

Now we turn to the transport properties. In order to
average with respect to energy distribution, we need one
assumption: since the kinetic energy is positive, the

domain of the function p_(E) is £ > —F and that of
p.(E) is E> (N + 1)F. However, we assume that the
two functions p, (E) are nonzero in a common domain
E > max[—F,(N + 1)F](=E;). Then by multiplying
Eq. (45) by a,(F) and averaging it with respect to E over
the interval E > Ej, one obtains the following particle
distribution P,

B, =Ade ™ + B, (50)
where 4 and B are given by:
7 P —P,
A= Ea(E)A(E) = 1
/ dEa(EJA(E) = 3 NF Ginh(N + 2)F (51)
Ey
B= / dE a(E)B(E)
Ey
_ Pyexp[(N +2)F] — P_exp[—(N + 2)F] (52)
N 2sinh(N + 2)F ’
with Py the particle numbers per site at the edges:
p.=F / dE a(E)*p_(E) ,
Ey
P, = exp[-2(N + 1)F] / dEa(E)*p(E) .
Ey

Similarly, the average total energy per site E, is given by

E, =Age " + B, (53)

where Ag and Bg are

7 E_—E,

& :/dEEa(E)A(E) = SV SN T O)F (54)

Ey

By = / dE E a(E)B(E)
Ey
_ E . exp[(N + 2)F] — E_ exp[—(N + 2)F] (55)

2sinh(N + 2)F ’

with E. the average energies per site at the edges:

E_=¢&"F / dE E a(E)*p_(E) ,

Ey

E. = exp[-2(N + 1)F] / dE E a(E)*p,(E) .

The particle flow JM

a1 and total energy flow J"]l:i’H’l are
calculated as before

e —ef _

M
‘]n‘nJrl - 2leF +e_}: B ) (56)
F —F
E _ e —¢ —
Jn‘n+1 = — 2lm BE . (57)



All these results are expected from the Smoluchowski
equation for constant external force. Hence, the system
exhibits transport governed by a Smoluchowski equa-
tion.

This can also be seen in the macroscopic limit of the
particle flow:

J mﬂ . Ip(X)

. 2DFp(X)—D X
where & = F/d is the macroscopic field strength. The
flow Eq. (58) is nothing but the flow for the Smolu-
chowski equation under constant external force & . The
macroscopic limit of the energy flow can be calculated
as before

mX) = (58)

I De(X
n|n+1 . 6( )
= e(X X)—Dp(X

P eX)ju(X) — Dp) S22
where €(X) is the average energy per particle, and which
again implies the existence of the heat flow j,(X)
proportional to the gradient of the energy per particle
[24]:

Je(X) = (59)

0e(X)

Ja(X) = —Dp(X) X

6 Entropy production for stationary states

For thermostated systems, the temporal variation of the
conventional Gibbs entropy provides a good measure of
the irreversible entropy production because the dynam-
ics is not conservative (Refs. [6, 10] and references
therein). On the other hand, for conservative systems,
the Gibbs entropy is kept constant with time and thus, it
does not provide physically relevant information. As
emphasized by Gaspard [18], for nonequilibrium sta-
tionary states represented by fractal distributions, the
Gibbs entropy does not exist for infinitely large systems
because of the fractality of the stationary states and the
coarse grained entropy should be used as the micro-
scopic entropy. Based on this view, Gaspard studied the
entropy balance for deterministic systems, particularly
for the dyadic multibaker map [18]. His approach was
generalized by Gilbert and Dorfman [21] for systems
with generating partitions. Similar approaches based on
the coarse grained entropy balance have been developed
by Tél and coworkers [19, 20] and by Nicolis and Daems
[25]. In this section, following Gaspard’s approach, we
calculate the coarse grained entropy production for the
stationary states studied in Sect. 5.

We begin with the coarse grained entropy of a set
A with respect to the measure v used by Gilbert and
Dorfman [21]:

{(n,x,y,E)|0 <x < a,(E"),0<y<I"a,(E)E § E<E
[")a
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to(B))
> v(B)n VO(BJ-) 7

B;cA

S(4: {B})) = (60)

where {B;} is a partition of the phase space, y, is the
reference Lebesgue measure and the summation is taken
over all B; included in a set 4. In Ref. [21], the authors
assumed that the partition {B;} is generating, but here
we do not assume it and rather follow the line of
thoughts expressed in Ref. [18].

Now we briefly review the calculation of the entropy
production. Let S;(4 : {B;}) be the coarse grained en-
tropy of set 4 with respect to the measure v, at time ¢,
then the entropy change is given by

AS,(A4:{B}}) = Sui(4: (B))) ~ S+ (B}}) |

which is the sum of the entropy flow A.S;(4 : {B;}) and
the entropy production A;S;(4 : {B;}). Since the entropy
flow is given by [18, 21]

AcS/(A: {Bj}) = S/(By'A: {Bj}) — Si(d : {B}}) ,

one obtains

AiSi(A = {Bj}) = Sic1(A - {B;}) — Si(By'A - {B;}) . (61)

Since the map B preserves the Lebesgue measure,
one has yy(B)) = py(Bg'B;). Also B; C A implies
By'B; C By'd, and vi41(B;) = v(Bg'B;) by definition.
Therefore,

Ho(B))
Sii1(4 :{B;
H-l { } éw-H Vz+1(B/)
- 1t(Bg'B))
= vi(Bg'B;) In=—2 /.
BmlB,Zc;BQIA T w(B'B))
=S/(By'4: {By'B}) (62)
and hence,
A,’S[(A . {Bj})
= 5,(By'4: {By'Bj}) — S.(By' A : {B}}) . (63)

We note that an entropy production of a set 4 can be
calculated with the aid of Eq. (63) only when the set
Bg'A has the form

B<_plA = Usome iB(_plBi = Usome ij .

For open finite systems, the entropy production thus
defined takes a finite value and remains constant when
the size of the partitioning sets B; is not too small and
not too large and it vanishes when the size of B; is
vanishingly small [18, 21]. Based on this observation, we
use a rough partition consisting of the cells

"+ AE},
W(E'N,E' <E<E + AE},
a,(E'),E' <E<E +AE} ,

(64)
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and focus our attention on the macroscopic expression
of the entropy production for a set 4 = By {(n,x,,E)|
0 <x < ayE),0 <y < a,(E),Eo < E}. Then, by a
straightforward calculation and after taking the limit
AE — 0, one finds

AS(A: {B}}) = / dE si(E) | (65)

where the entropy production per energy s;(E) is given
by

. 211, (E)
si(E) =— 1", (E) lnm
N e*11,(E)
B ey (o0

with TL,(E) = a,(E)Gu|n, a,(E), E] the distribution per
site and per energy. We recall that II,(E) obeys the
equation

21H71(E) = liHlH»l(E) + ZJFanl(E) ) (67)

. 21
! :1+ei2F .

Since —Inz is a concave function of z, the entropy
production per energy s;(E) is non-negative

si(E) > — {I" T, 1 (E) + I' T, (E)}

17e " T1,(E) + I*e* T1,(E)
I | A (E) + I+11,,_4 (E)

and vanishes only when e* 1, |(E) = e 11, (E). It
is remarkable that the condition of vanishing entropy
production s;(E) =0 is equivalent the condition of
vanishing flow J,,.1(E) = 0.

The relation between the entropy production and
the flow becomes more explicit when one considers the
macroscopic limit. By setting [I1,(E)/d = n(X,E),
F/d =% and [ = tD/d?, and taking the limit of t — 0
and d — 0, we have

(68)

x In = 2In,(E)lIn1=0 ,

0,(E) = Sif(j)
— ﬁ(ZDQ”n(X,E) +Dw> . (69)

which is proportional to the square of the flow. Hence,
the entropy production per unit time and per unit length
is given by

oo

AS
L / dEo,(E)
Eo
i 1 on(X,E)\>
i 773
- / I e E <2D,/n(X,E)+D 5 ) .
Eo
(70)

In particular, when the energy distribution is indepen-
dent of the spatial distribution

(X, E) = p(X)h(E) , with / dEW(E) =1 |

the entropy production A;S becomes

AS 1
d  Dp(X)

(21)97;7()() +D8P(X>>2 : (71)

1924

As discussed by Breymann et al. [20], this result agrees
with classical thermodynamics since the entropy pro-
duction is proportional to the square of the particle
flow Eq. (58). We emphasize that the entropy produc-
tion which is consistent with classical thermodynamics
can be obtained for a conservative system. Therefore,
in order to be consistent with classical thermody-
namics, the inclusion of dissipation is not always
necessary.

7 Conclusions

We have constructed a multibaker map with “kinetic
energy”’ to which an external field can be applied. The
map is volume-preserving, time-reversal symmetric and
conserves total energy. In an appropriate macroscopic
limit, the particle distribution obeys a Smoluchowski-
type equation. For the cases without an external field
and with a constant external force, the nonequilibrium
stationary states are constructed by solving the evolution
equation of the partially integrated distribution func-
tions. These states are described by singular functions
such as an incomplete Takagi function and Lebesgue’s
singular functions. Moreover, in an appropriate macro-
scopic limit, the mass flow for the stationary states is
identical to the one expected from the Smoluchowski
equation and there appears a “heat flow” proportional
to the local energy gradient. The Gaspard-Gilbert—
Dorfman entropy production is calculated for the
stationary states and is shown to be positive. Particu-
larly, for the case with a constant external force, when
the energy distribution is independent of the spatial
distribution, the macroscopic limit of the entropy
production is consistent with classical thermodynamics.
We give a few more remarks.

1. In contrast to the observation for the conventional
multibaker map by Breymann et al. [20], the entropy
production which is consistent with classical thermody-
namics can be obtained for a conservative driven mul-
tibaker map. The key ingredient of our model is the
variation of the phase-space volume with respect to the
site coordinate n. This variation somehow plays the role
of phase-space contraction and, as a result, the entropy
production becomes similar to that for the dissipative
multibaker model.

2. As discussed in the Appendix, there exists a close
relation between the nonequilibrium stationary states of
the present model and the dissipative multibaker
map studied by Breymann, et al. [20] with “appropriate
dissipation”. Indeed, the stationary distributions for
both cases are identical except for a trivial scaling
factor.



3. The nonequilibrium stationary distributions de-
rived in Sect. 5 are absolutely continuous with respect to
the Lebesgue measure for the finite mutibaker chain.
They become singular only for the infinite chain. As
shown in the Appendix, this is also the case for a dissi-
pative multibaker chain provided that the distributions
of the particle reservoirs are uniform with respect to the
Lebesgue measure. It is remarkable that the present
conservative multibaker map shares common properties
with the dissipative multibaker map.

4. Since the potential @ is arbitrary and the evolution
equation of the distribution function reduces to a
Smoluchowski-type equation in the macroscopic limit,
the present model for a random potential ® provides
a deterministic model of the Brownian motion in a
random environment [26].
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Appendix: dissipative multibaker map

In this appendix, we construct nonequilibrium station-
ary states for the three-strip dissipative multibaker map
studied by Breymann et al. [20].

Bd(n,X,y) -
(n—1, %, I~ y), x€0,17),
(n, X510 sy 1), xe[lm,1-1),
_ 7t -~ -
(1, U Gy 1), xen-m)

(A1)

where />0, I£>0,5>0 and [T+ 1" +5s :~l~+ + 1
+s = 1. Note that, when [T #[" (or I~ #17), the
map By is nonconservative. As before, the evolution
equation for the partially integrated distribution func-
tion Gi(n,x,y) = [; d'p,(n,x,)/) is derived where p, is
the density function at time ¢, and we look for its
stationary solution under the boundary condition:

Gt(_lax7y>:pfy7 Gt(N+17an):P+y . (Az)

Then we find that the partially integrated distribution
function of the stationary state is independent of x and is
given by

Goo(n,y) =4 <§—+> ngn () + Bha(y)

where the constants 4 and B depend on p, and the
functions ¢,(y) and h,(y) are unique solutions of the
functional equations

(A3)
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I gun(v/17), O<y<i),

() =4 s galy = 17)/s] + 17, (Im<y<1-1%,
gl —1+1)/+1-17, (1= <y<1) |
(A4)
and
I~ hn+1(y/77)7 (OSJ’SZL),
ha(y) = S s by = 1) [s] + 17, (- <y<1-19,
o= 1+1)/ ) +1—1+, (1-I"<y<1) ,
(A5)
with the boundary conditions ¢_;(¥) =gn+i(y) =

h_1(y) = hys1(y) =p. Note that, for a finite open
multibaker chain, the functions g, and 4, are differen-
tiable with finite derivatives almost everywhere with
respect to the Lebesgue measure and, as a result, the
stationary measure is absolutely continuous with respect
to the Lebesgue measure. The stationary measure is
singular only for an infinite or closed multibaker chain.
The flow associated with the stationary state is

Junir = 17 Goo(n,1) = 1" G (n +1,1)
=(I"=17)B,

which is independent of 4. Because of this fact, we call
the part of G (n,y) proportional to B the flow-carrying
component and the one proportional to 4 the flow-non-
carrying component.

Breymann et al. [20] studied the entropy production
of the nonconservative multibaker map Eq. (Al) and
showed that the entropy production has a macroscopic
limit consistent with classical thermodynamics if, and
only if, the equalities /* = [~ and I~ = I* hold. Now we
show that their result can be restated such that the en-
tropy production has a macroscopic limit consistent with
classical thermodynamics if, and only if, the flow-non-
carrying component for an infinitely long multibaker
chain is absolutely continuous with respect to the Le-
besgue measure. This observation seems to suggest a
close relation between the entropy production and the
singularity of the distribution.

The proof is easy. For an infinitely long multibaker
chain, the function g, reduces to the function g which is
the solution of

(A6)

I g(v/17), 0<y<i,
gy) =1 sgly—17)/s| + 1", i <y<i1-it
I gly—1+1/IT+1=1", 1-It"<y<1,

which is the cumulative function of the multinomial
measure on the real axis. It is known [27] that the multi-
nomial measure is absolutely continuous with respect to
the Lebesgue measure if, and only if, the equalities
[T =1 and [~ = [ hold. This completes the proof.
Finally we remark that there exists an interesting
relation between our model and the Breymann-Tél-
Vollmer model with “appropriate dissipation”. Indeed,
when the conditions /T =/~ and /= = [T are satisfied,
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gu(y) =y and h,(y) = f4(y), where f,(y) is the incom-
plete Lebesgue singular function Eq. (49) discussed in
Sect. 5. Thus, we have

+ n
) VL BL0) |

Goo(n,y) =4 <l_

which, except for a scaling factor, is identical to the
distribution Eq. (48) obtained in Sect. 5.2. (Note that in
our model [T/~ = e~ %F).

(A8)
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